apc-p15-tool/pkg/pkcs15/encrypted_envelope.go

230 lines
6.2 KiB
Go
Raw Normal View History

package pkcs15
import (
"apc-p15-tool/pkg/tools"
"apc-p15-tool/pkg/tools/asn1obj"
"crypto/cipher"
"crypto/des"
"crypto/hmac"
"crypto/rand"
"crypto/sha1"
"crypto/sha256"
"encoding/asn1"
"math/big"
"golang.org/x/crypto/pbkdf2"
)
// fixed specs for apc cert
const (
apcKEKPassword = "user"
apcKEKIterations = 5000
)
// encryptedKeyEnvelope encrypts p15's private key using the algorithms and
// params expected in the APC file.
func (p15 *pkcs15KeyCert) computeEncryptedKeyEnvelope() error {
// if computation already performed, this is a no-op (keep existing envelope)
if p15.envelopedPrivateKey != nil && len(p15.envelopedPrivateKey) != 0 {
return nil
}
// calculate values for the object
kekSalt := make([]byte, 8)
_, err := rand.Read(kekSalt)
if err != nil {
return err
}
// kek hash alg
kekHash := sha256.New
// size of 3DES key (k1 + k2 + k3)
kekSize := 24
// kek
kek := pbkdf2.Key([]byte(apcKEKPassword), kekSalt, apcKEKIterations, kekSize, kekHash)
// make DES cipher from KEK for CEK
cekDesCipher, err := des.NewTripleDESCipher(kek)
if err != nil {
return err
}
// cek (16 bytes for authEnc128) -- see: rfc3211
cekLen := uint8(16)
cek := make([]byte, cekLen)
_, err = rand.Read(cek)
if err != nil {
return err
}
// LEN + Check Val [3]
wrappedCEK := append([]byte{cekLen}, tools.BitwiseComplimentOf(cek[:3])...)
// + CEK
wrappedCEK = append(wrappedCEK, cek...)
// + padding (if needed)
// pad wrapped CEK to min 2 * block len
cekPadLen := 0
if len(wrappedCEK) < 2*cekDesCipher.BlockSize() {
cekPadLen = 2*cekDesCipher.BlockSize() - len(wrappedCEK)
} else if len(wrappedCEK)%cekDesCipher.BlockSize() != 0 {
// pad if not a multiple of block len
cekPadLen = cekDesCipher.BlockSize() - len(wrappedCEK)%cekDesCipher.BlockSize()
}
cekPadding := make([]byte, cekPadLen)
_, err = rand.Read(cekPadding)
if err != nil {
return err
}
2024-01-27 16:35:36 +00:00
wrappedCEK = append(wrappedCEK, cekPadding...)
// double encrypt CEK
cekEncryptSalt := make([]byte, 8)
_, err = rand.Read(cekEncryptSalt)
if err != nil {
return err
}
cekEncrypter := cipher.NewCBCEncrypter(cekDesCipher, cekEncryptSalt)
encryptedCEKOnly1Rd := make([]byte, len(wrappedCEK))
cekEncrypter.CryptBlocks(encryptedCEKOnly1Rd, wrappedCEK)
encryptedCEK := make([]byte, len(encryptedCEKOnly1Rd))
cekEncrypter.CryptBlocks(encryptedCEK, encryptedCEKOnly1Rd)
// content encryption
contentEncSalt := make([]byte, 8)
_, err = rand.Read(contentEncSalt)
if err != nil {
return err
}
contentEncryptKey := pbkdf2.Key(cek, []byte("encryption"), 1, 24, sha1.New)
contentDesCipher, err := des.NewTripleDESCipher(contentEncryptKey)
if err != nil {
return err
}
2024-01-27 16:35:36 +00:00
// envelope content (that will be encrypted)
content := p15.privateKeyObject()
2024-01-27 16:35:36 +00:00
// pad content, see: https://datatracker.ietf.org/doc/html/rfc3852 6.3
contentPadLen := uint8(contentDesCipher.BlockSize() - (len(content) % contentDesCipher.BlockSize()))
// ALWAYS pad, if content is exact, add full block of padding
if contentPadLen == 0 {
contentPadLen = uint8(contentDesCipher.BlockSize())
}
for i := uint8(1); i <= contentPadLen; i++ {
content = append(content, byte(contentPadLen))
}
contentEncrypter := cipher.NewCBCEncrypter(contentDesCipher, contentEncSalt)
encryptedContent := make([]byte, len(content))
contentEncrypter.CryptBlocks(encryptedContent, content)
// data encryption alg block
encAlgObj := asn1obj.Sequence([][]byte{
// ContentEncryptionAlgorithmIdentifier
asn1obj.ObjectIdentifier(asn1obj.OIDauthEnc128),
// ContentEncryptionAlgorithmIdentifier details/info
asn1obj.Sequence([][]byte{
// encryption alg & salt
asn1obj.Sequence([][]byte{
// encryption alg
asn1obj.ObjectIdentifier(asn1obj.OIDdesEDE3CBC),
// encryption alg's salt
asn1obj.OctetString(contentEncSalt),
}),
// mac alg
asn1obj.Sequence([][]byte{
asn1obj.ObjectIdentifier(asn1obj.OIDhmacWithSHA256),
asn1.NullBytes,
}),
}),
})
2024-03-17 17:45:55 +00:00
// encrypted content MAC
macKey := pbkdf2.Key(cek, []byte("authentication"), 1, 32, sha1.New)
macHasher := hmac.New(sha256.New, macKey)
// the data the MAC covers is the algId header bytes + encrypted data bytes
hashMe := append(encAlgObj, encryptedContent...)
// make MAC
_, err = macHasher.Write(hashMe)
if err != nil {
return err
}
mac := macHasher.Sum(nil)
// build object
// AuthEnvelopedData Type
envelope := [][]byte{
// CMSVersion
asn1obj.Integer(big.NewInt(2)),
// RecipientInfos
asn1obj.Set([][]byte{
// 1st and only 'RecipientInfo' - pwri [3] PasswordRecipientinfo
asn1obj.ExplicitCompound(3, [][]byte{
// CMSVersion
asn1obj.Integer(big.NewInt(0)),
// keyDerivationAlgorithm [0]
asn1obj.ExplicitCompound(0, [][]byte{
// KeyDerivationAlgorithmIdentifier
asn1obj.ObjectIdentifier(asn1obj.OIDpkcs5PBKDF2),
// KeyDerivationAlgorithmIdentifier details/info
asn1obj.Sequence([][]byte{
// kek pbkdf2 Salt
asn1obj.OctetString(kekSalt),
// kek pbkdf2 Iterations
asn1obj.Integer(big.NewInt(apcKEKIterations)),
// kek pbkdf2 hash type
asn1obj.Sequence([][]byte{
asn1obj.ObjectIdentifier(asn1obj.OIDhmacWithSHA256),
asn1.NullBytes,
}),
}),
}),
// keyEncryptionAlgorithm (for CEK)
asn1obj.Sequence([][]byte{
// KeyEncryptionAlgorithmIdentifier
asn1obj.ObjectIdentifier(asn1obj.OIDpwriKEK),
// KeyEncryptionAlgorithmIdentifier details/info
asn1obj.Sequence([][]byte{
// encryption alg
asn1obj.ObjectIdentifier(asn1obj.OIDdesEDE3CBC),
// encryption alg's salt
asn1obj.OctetString(cekEncryptSalt),
}),
}),
// EncryptedKey (the actual ciphertext for the CEK)
asn1obj.OctetString(encryptedCEK),
}),
}),
// EncryptedContentInfo (actual encrypted content)
asn1obj.Sequence([][]byte{
// ContentType
asn1obj.ObjectIdentifier(asn1obj.OIDpkcs7Data),
// encryption alg OBJ
encAlgObj,
// [0] IMPLICIT EncryptedContent (AKA the ciphertext)
asn1obj.ExplicitValue(0, encryptedContent),
}),
// MAC
asn1obj.OctetString(mac),
}
// combine to singular byte slice
finalEnv := []byte{}
for i := range envelope {
finalEnv = append(finalEnv, envelope[i]...)
}
// set p15 struct envelope
p15.envelopedPrivateKey = finalEnv
return nil
}