From 40eca754e0c5da50a92fea6f881224f229d8ef52 Mon Sep 17 00:00:00 2001 From: "Greg T. Wallace" Date: Tue, 9 Jul 2024 19:05:14 -0400 Subject: [PATCH] add ecdsa key support and enable 4,092 RSA * apcssh: add descriptive error when required file(s) not passed * create: dont create key+cert file when key isn't supported by NMC2 * config: fix usage messages re: key types * p15 files: dont generate key+cert when it isn't needed (aka NMC2 doesn't support key) * pkcs15: pre-calculate envelope when making the p15 struct * pkcs15: omit key ID 8 & 9 from EC keys * pkcs15: update key decode logic * pkcs15: add key type value for easy determination of compatibility * pkcs15: add ec key support * pkcs15: separate functions for key and key+cert p15 files * update README see: https://github.com/gregtwallace/apc-p15-tool/issues/6 --- README.md | 33 ++- pkg/apcssh/ssl.go | 13 + pkg/app/cmd_create.go | 36 +-- pkg/app/config.go | 8 +- pkg/app/pem_to_p15.go | 57 +++-- pkg/pkcs15/encrypted_envelope.go | 31 ++- pkg/pkcs15/keyid.go | 39 +-- pkg/pkcs15/pem_decode.go | 66 ++--- pkg/pkcs15/pem_parse.go | 62 +++++ pkg/pkcs15/pem_to_p15.go | 412 ++++++++++++++++++++----------- pkg/pkcs15/private_key.go | 13 +- pkg/tools/asn1obj/oid.go | 4 + 12 files changed, 508 insertions(+), 266 deletions(-) diff --git a/README.md b/README.md index 5e47692..976d5fc 100644 --- a/README.md +++ b/README.md @@ -58,23 +58,36 @@ and licensed under the GPL-3.0 license. Both NMC2 and NMC3 devices should be fully supported. However, I have one NMC2 device in a home lab and have no way to guarantee success in all cases. -Only RSA 1,024, 2,048, and 3,072 bit keys are accepted. 1,024 bit RSA is no -longer considered completely secure; avoid keys of this size if possible. Most -(all?) public ACME services won't accept keys of this size anyway. +### Key Types and Sizes -NMC2 does not officially support the 3,072 bit key size, however, it works fine -on my NMC2. If you use this size and it doesn't work on your NMC2, try a 2,048 -bit key instead. Later versions of the NMC3 firmware support RSA 4,096 and -ECDSA keys, but this tool does not. ECDSA was not included in APC's proprietary -tool, and as such I have no way to generate files to reverse engineer. +NMC2: +- RSA 1,024, 2,048, 3,072* bit lengths. + +NMC3: +- RSA 1,024, 2,048, 3,072, and 4,092 bit lengths. +- ECDSA curves P-256, P-384, and P-521. + +* 3,072 bit length is not officially supported by my NMC2, but appears to work + fine. + +1,024 bit RSA is no longer considered completely secure; avoid keys of +this size if possible. Most (all?) public ACME services won't accept keys +of this size anyway. + +### General Troubleshooting My setup (and therefore the testing setup) is: - APC Smart-UPS 1500VA RM 2U SUA1500RM2U (Firmware Revision 667.18.D) - AP9631 NMC2 Hardware Revision 05 running AOS v7.1.2 and Boot Monitor v1.0.9. -If you have problems, please post the log in an issue and I can try to fix it -but it may be difficult without your particular hardware to test with. +If you have trouble, your first step should be to update your NMC's firmware. +Many issues with this tool will be resolved simply by updating to the newest +firmware. + +If you have a problem after that, please post the log in an issue and I can +try to fix it but it may be difficult without your particular hardware to +test with. In particular, if you are experiencing `ssh: handshake failed:` first try using the `--insecurecipher` flag. If this works, you should upgrade your diff --git a/pkg/apcssh/ssl.go b/pkg/apcssh/ssl.go index 2eb3bce..18bff70 100644 --- a/pkg/apcssh/ssl.go +++ b/pkg/apcssh/ssl.go @@ -1,10 +1,13 @@ package apcssh import ( + "errors" "fmt" "strings" ) +var errSSLMissingData = errors.New("apcssh: ssl cert install: cant install nil data (unsupported key/nmc version/nmc firmware combo?)") + // InstallSSLCert installs the specified p15 key and p15 cert files on the // UPS. It has logic to deduce if the NMC is a newer version (e.g., NMC3 with // newer firmware) and acts accordingly. @@ -29,6 +32,11 @@ func (cli *Client) InstallSSLCert(keyP15 []byte, certPem []byte, keyCertP15 []by // installSSLCertModern installs the SSL key and certificate using the UPS built-in // command `ssl`. This command is not present on older devices (e.g., NMC2) or firmwares. func (cli *Client) installSSLCertModern(keyP15 []byte, certPem []byte) error { + // fail if required data isn't present + if keyP15 == nil || len(keyP15) <= 0 || certPem == nil || len(certPem) <= 0 { + return errSSLMissingData + } + // upload the key P15 file err := cli.UploadSCP("/ssl/nmc.key", keyP15, 0600) if err != nil { @@ -63,6 +71,11 @@ func (cli *Client) installSSLCertModern(keyP15 []byte, certPem []byte) error { // them to a .p15 file on the UPS. This is used for older devices (e.g., NMC2) and // firmwares that do not support the `ssl` command. func (cli *Client) installSSLCertLegacy(keyCertP15 []byte) error { + // fail if required data isn't present + if keyCertP15 == nil || len(keyCertP15) <= 0 { + return errSSLMissingData + } + // upload/install keyCert P15 file err := cli.UploadSCP("/ssl/defaultcert.p15", keyCertP15, 0600) if err != nil { diff --git a/pkg/app/cmd_create.go b/pkg/app/cmd_create.go index 77f13ee..8791a81 100644 --- a/pkg/app/cmd_create.go +++ b/pkg/app/cmd_create.go @@ -51,11 +51,14 @@ func (app *app) cmdCreate(_ context.Context, args []string) error { } app.stdLogger.Printf("create: apc p15 key file %s written to disk", keyFileName) - err = os.WriteFile(keyCertFileName, apcKeyCertFile, 0600) - if err != nil { - return fmt.Errorf("create: failed to write apc p15 key+cert file (%s)", err) + // skip key+cert if it wasn't generated + if len(apcKeyCertFile) > 0 { + err = os.WriteFile(keyCertFileName, apcKeyCertFile, 0600) + if err != nil { + return fmt.Errorf("create: failed to write apc p15 key+cert file (%s)", err) + } + app.stdLogger.Printf("create: apc p15 key+cert file %s written to disk", keyCertFileName) } - app.stdLogger.Printf("create: apc p15 key+cert file %s written to disk", keyCertFileName) // if debug, write additional debug files (b64 format to make copy/paste into asn1 decoder // easy to do e.g., https://lapo.it/asn1js) @@ -67,19 +70,22 @@ func (app *app) cmdCreate(_ context.Context, args []string) error { } app.debugLogger.Printf("create: apc p15 key file %s written to disk", keyFileNameDebug) - keyCertFileNameDebug := keyCertFileName + ".noheader.b64" - err = os.WriteFile(keyCertFileNameDebug, []byte(base64.StdEncoding.EncodeToString(apcKeyCertFile[apcHeaderLen:])), 0600) - if err != nil { - return fmt.Errorf("create: failed to write apc p15 key+cert file (%s)", err) - } - app.debugLogger.Printf("create: apc p15 key+cert file %s written to disk", keyCertFileNameDebug) + // skip key+cert if it wasn't generated + if len(apcKeyCertFile) > 0 { + keyCertFileNameDebug := keyCertFileName + ".noheader.b64" + err = os.WriteFile(keyCertFileNameDebug, []byte(base64.StdEncoding.EncodeToString(apcKeyCertFile[apcHeaderLen:])), 0600) + if err != nil { + return fmt.Errorf("create: failed to write apc p15 key+cert file (%s)", err) + } + app.debugLogger.Printf("create: apc p15 key+cert file %s written to disk", keyCertFileNameDebug) - keyCertFileNameHeaderDebug := keyCertFileName + ".header.b64" - err = os.WriteFile(keyCertFileNameHeaderDebug, []byte(base64.StdEncoding.EncodeToString(apcKeyCertFile[:apcHeaderLen])), 0600) - if err != nil { - return fmt.Errorf("create: failed to write apc p15 key+cert file (%s)", err) + keyCertFileNameHeaderDebug := keyCertFileName + ".header.b64" + err = os.WriteFile(keyCertFileNameHeaderDebug, []byte(base64.StdEncoding.EncodeToString(apcKeyCertFile[:apcHeaderLen])), 0600) + if err != nil { + return fmt.Errorf("create: failed to write apc p15 key+cert file (%s)", err) + } + app.debugLogger.Printf("create: apc p15 key+cert file header %s written to disk", keyCertFileNameHeaderDebug) } - app.debugLogger.Printf("create: apc p15 key+cert file header %s written to disk", keyCertFileNameHeaderDebug) } diff --git a/pkg/app/config.go b/pkg/app/config.go index e8ff1fc..6ef840b 100644 --- a/pkg/app/config.go +++ b/pkg/app/config.go @@ -68,9 +68,9 @@ func (app *app) getConfig(args []string) error { // create -- subcommand createFlags := ff.NewFlagSet("create").SetParent(rootFlags) - cfg.create.keyPemFilePath = createFlags.StringLong("keyfile", "", "path and filename of the rsa-1024 or rsa-2048 key in pem format") + cfg.create.keyPemFilePath = createFlags.StringLong("keyfile", "", "path and filename of the key in pem format") cfg.create.certPemFilePath = createFlags.StringLong("certfile", "", "path and filename of the certificate in pem format") - cfg.create.keyPem = createFlags.StringLong("keypem", "", "string of the rsa-1024 or rsa-2048 key in pem format") + cfg.create.keyPem = createFlags.StringLong("keypem", "", "string of the key in pem format") cfg.create.certPem = createFlags.StringLong("certpem", "", "string of the certificate in pem format") cfg.create.outFilePath = createFlags.StringLong("outfile", createDefaultOutFilePath, "path and filename to write the key+cert p15 file to") cfg.create.outKeyFilePath = createFlags.StringLong("outkeyfile", createDefaultOutKeyFilePath, "path and filename to write the key p15 file to") @@ -88,9 +88,9 @@ func (app *app) getConfig(args []string) error { // install -- subcommand installFlags := ff.NewFlagSet("install").SetParent(rootFlags) - cfg.install.keyPemFilePath = installFlags.StringLong("keyfile", "", "path and filename of the rsa-1024 or rsa-2048 key in pem format") + cfg.install.keyPemFilePath = installFlags.StringLong("keyfile", "", "path and filename of the key in pem format") cfg.install.certPemFilePath = installFlags.StringLong("certfile", "", "path and filename of the certificate in pem format") - cfg.install.keyPem = installFlags.StringLong("keypem", "", "string of the rsa-1024 or rsa-2048 key in pem format") + cfg.install.keyPem = installFlags.StringLong("keypem", "", "string of the key in pem format") cfg.install.certPem = installFlags.StringLong("certpem", "", "string of the certificate in pem format") cfg.install.hostAndPort = installFlags.StringLong("apchost", "", "hostname:port of the apc ups to install the certificate on") cfg.install.fingerprint = installFlags.StringLong("fingerprint", "", "the SHA256 fingerprint value of the ups' ssh server") diff --git a/pkg/app/pem_to_p15.go b/pkg/app/pem_to_p15.go index e376bc6..d48d4a8 100644 --- a/pkg/app/pem_to_p15.go +++ b/pkg/app/pem_to_p15.go @@ -3,13 +3,22 @@ package app import ( "apc-p15-tool/pkg/pkcs15" "fmt" + "slices" ) -// pemToAPCP15 reads the specified pem files and returns the apc p15 files (both a -// p15 file with just the private key, and also a p15 file with both the private key -// and certificate). The key+cert file includes the required APC header, prepended. +// list of keys supported by the NMC2 +var nmc2SupportedKeyTypes = []pkcs15.KeyType{ + pkcs15.KeyTypeRSA1024, + pkcs15.KeyTypeRSA2048, + pkcs15.KeyTypeRSA3072, // officially not supported but works +} + +// pemToAPCP15 reads the specified pem files and returns the apc p15 file(s). If the +// key type of the key is not supported by NMC2, the combined key+cert file is not +// generated and nil is returned instead for that file. If the key IS supported by +// NMC2, the key+cert file is generated and the proper header is prepended. func (app *app) pemToAPCP15(keyPem, certPem []byte, parentCmdName string) (keyFile []byte, apcKeyCertFile []byte, err error) { - app.stdLogger.Printf("%s: making apc p15 file from pem", parentCmdName) + app.stdLogger.Printf("%s: making apc p15 file(s) content from pem", parentCmdName) // make p15 struct p15, err := pkcs15.ParsePEMToPKCS15(keyPem, certPem) @@ -17,24 +26,40 @@ func (app *app) pemToAPCP15(keyPem, certPem []byte, parentCmdName string) (keyFi return nil, nil, fmt.Errorf("%s: failed to parse pem files (%w)", parentCmdName, err) } - app.stdLogger.Printf("%s: successfully loaded pem files", parentCmdName) + app.stdLogger.Printf("%s: successfully parsed pem files", parentCmdName) - // make file bytes - keyCertFile, keyFile, err := p15.ToP15Files() + // make key file (always) + keyFile, err = p15.ToP15Key() if err != nil { - return nil, nil, fmt.Errorf("%s: failed to make p15 file (%w)", parentCmdName, err) + return nil, nil, fmt.Errorf("%s: failed to make p15 key file (%w)", parentCmdName, err) } - // make header for file bytes - apcHeader, err := makeFileHeader(keyCertFile) - if err != nil { - return nil, nil, fmt.Errorf("%s: failed to make p15 file header (%w)", parentCmdName, err) + app.stdLogger.Printf("%s: successfully generated p15 key file content", parentCmdName) + + // check key type for compat with NMC2 + if slices.Contains(nmc2SupportedKeyTypes, p15.KeyType()) { + app.stdLogger.Printf("%s: key type is supported by NMC2, generating p15 key+cert file content...", parentCmdName) + + // make file bytes + keyCertFile, err := p15.ToP15KeyCert() + if err != nil { + return nil, nil, fmt.Errorf("%s: failed to make p15 key+cert file content (%w)", parentCmdName, err) + } + + // make header for file bytes + apcHeader, err := makeFileHeader(keyCertFile) + if err != nil { + return nil, nil, fmt.Errorf("%s: failed to make p15 key+cert file header (%w)", parentCmdName, err) + } + + // combine header with file + apcKeyCertFile = append(apcHeader, keyCertFile...) + } else { + // NMC2 unsupported + app.stdLogger.Printf("%s: key type is not supported by NMC2, skipping p15 key+cert file content", parentCmdName) } - // combine header with file - apcKeyCertFile = append(apcHeader, keyCertFile...) - - app.stdLogger.Printf("%s: apc p15 file data succesfully generated", parentCmdName) + app.stdLogger.Printf("%s: apc p15 file(s) data succesfully generated", parentCmdName) return keyFile, apcKeyCertFile, nil } diff --git a/pkg/pkcs15/encrypted_envelope.go b/pkg/pkcs15/encrypted_envelope.go index cead3c8..71433d1 100644 --- a/pkg/pkcs15/encrypted_envelope.go +++ b/pkg/pkcs15/encrypted_envelope.go @@ -21,14 +21,19 @@ const ( apcKEKIterations = 5000 ) -// encryptedKeyEnvelope encrypts p15's rsa private key using the algorithms and -// params expected in the APC file. Salt values are always random. -func (p15 *pkcs15KeyCert) encryptedKeyEnvelope() ([]byte, error) { +// encryptedKeyEnvelope encrypts p15's private key using the algorithms and +// params expected in the APC file. +func (p15 *pkcs15KeyCert) computeEncryptedKeyEnvelope() error { + // if computation already performed, this is a no-op (keep existing envelope) + if p15.envelopedPrivateKey != nil && len(p15.envelopedPrivateKey) != 0 { + return nil + } + // calculate values for the object kekSalt := make([]byte, 8) _, err := rand.Read(kekSalt) if err != nil { - return nil, err + return err } // kek hash alg @@ -42,7 +47,7 @@ func (p15 *pkcs15KeyCert) encryptedKeyEnvelope() ([]byte, error) { // make DES cipher from KEK for CEK cekDesCipher, err := des.NewTripleDESCipher(kek) if err != nil { - return nil, err + return err } // cek (16 bytes for authEnc128) -- see: rfc3211 @@ -50,7 +55,7 @@ func (p15 *pkcs15KeyCert) encryptedKeyEnvelope() ([]byte, error) { cek := make([]byte, cekLen) _, err = rand.Read(cek) if err != nil { - return nil, err + return err } // LEN + Check Val [3] @@ -71,7 +76,7 @@ func (p15 *pkcs15KeyCert) encryptedKeyEnvelope() ([]byte, error) { cekPadding := make([]byte, cekPadLen) _, err = rand.Read(cekPadding) if err != nil { - return nil, err + return err } wrappedCEK = append(wrappedCEK, cekPadding...) @@ -80,7 +85,7 @@ func (p15 *pkcs15KeyCert) encryptedKeyEnvelope() ([]byte, error) { cekEncryptSalt := make([]byte, 8) _, err = rand.Read(cekEncryptSalt) if err != nil { - return nil, err + return err } cekEncrypter := cipher.NewCBCEncrypter(cekDesCipher, cekEncryptSalt) @@ -94,13 +99,13 @@ func (p15 *pkcs15KeyCert) encryptedKeyEnvelope() ([]byte, error) { contentEncSalt := make([]byte, 8) _, err = rand.Read(contentEncSalt) if err != nil { - return nil, err + return err } contentEncryptKey := pbkdf2.Key(cek, []byte("encryption"), 1, 24, sha1.New) contentDesCipher, err := des.NewTripleDESCipher(contentEncryptKey) if err != nil { - return nil, err + return err } // envelope content (that will be encrypted) @@ -151,7 +156,7 @@ func (p15 *pkcs15KeyCert) encryptedKeyEnvelope() ([]byte, error) { // make MAC _, err = macHasher.Write(hashMe) if err != nil { - return nil, err + return err } mac := macHasher.Sum(nil) @@ -218,5 +223,7 @@ func (p15 *pkcs15KeyCert) encryptedKeyEnvelope() ([]byte, error) { finalEnv = append(finalEnv, envelope[i]...) } - return finalEnv, nil + // set p15 struct envelope + p15.envelopedPrivateKey = finalEnv + return nil } diff --git a/pkg/pkcs15/keyid.go b/pkg/pkcs15/keyid.go index 68a3051..08a3ce4 100644 --- a/pkg/pkcs15/keyid.go +++ b/pkg/pkcs15/keyid.go @@ -2,6 +2,7 @@ package pkcs15 import ( "apc-p15-tool/pkg/tools/asn1obj" + "crypto/ecdsa" "crypto/rsa" "crypto/sha1" "encoding/binary" @@ -119,9 +120,13 @@ func (p15 *pkcs15KeyCert) keyIdInt8() []byte { nBytes := privKey.N.Bytes() keyIdVal = nBytes[len(nBytes)-8:] + case *ecdsa.PrivateKey: + // don't use this key id, leave empty + return nil + default: - // panic if non-RSA key - panic("key id 8 for non-rsa key is unexpected and unsupported") + // panic if unexpected key type + panic("key id 8 for key is unexpected and unsupported") } // object to return @@ -181,33 +186,13 @@ func (p15 *pkcs15KeyCert) keyIdInt9() []byte { e := big.NewInt(int64(privKey.PublicKey.E)) publicKeyPacket = append(publicKeyPacket, bigIntToMpi(e)...) - // case *ecdsa.PrivateKey: - // // A one-octet number denoting the public-key algorithm of this key. - // // 19 - ECDSA public key algorithm (see rfc 6637 s. 5) - // publicKeyPacket = append(publicKeyPacket, uint8(19)) - - // // Algorithm-Specific Fields for ECDSA public keys (see rfc 6637 s. 11 table) - // // This is a length byte followed by the curve ID (length is the number of bytes the curve ID uses) - // switch privKey.Curve.Params().Name { - // case "P-256": - // // 1.2.840.10045.3.1.7 8 2A 86 48 CE 3D 03 01 07 NIST curve P-256 - // publicKeyPacket = append(publicKeyPacket, byte(8)) - // hex, _ := hex.DecodeString("2A8648CE3D030107") - // publicKeyPacket = append(publicKeyPacket, hex...) - - // case "P-384": - // // 1.3.132.0.34 5 2B 81 04 00 22 NIST curve P-384 - // publicKeyPacket = append(publicKeyPacket, byte(5)) - // hex, _ := hex.DecodeString("2B81040022") - // publicKeyPacket = append(publicKeyPacket, hex...) - - // default: - // panic(fmt.Sprintf("key id 9 for ecdsa key curve %s is unexpected and unsupported", privKey.Curve.Params().Name)) - // } + case *ecdsa.PrivateKey: + // don't use this key id, leave empty + return nil default: - // panic if non-RSA key - panic("key id 9 for non-rsa key is unexpected and unsupported") + // panic if unexpected key type + panic("key id 9 for key is unexpected and unsupported") } // Assemble the V4 byte array that will be hashed diff --git a/pkg/pkcs15/pem_decode.go b/pkg/pkcs15/pem_decode.go index 66a34b7..2d51837 100644 --- a/pkg/pkcs15/pem_decode.go +++ b/pkg/pkcs15/pem_decode.go @@ -2,6 +2,7 @@ package pkcs15 import ( "crypto" + "crypto/ecdsa" "crypto/rsa" "crypto/tls" "crypto/x509" @@ -9,21 +10,27 @@ import ( "errors" "fmt" "reflect" + "slices" ) var ( errPemKeyBadBlock = errors.New("pkcs15: pem key: failed to decode pem block") errPemKeyFailedToParse = errors.New("pkcs15: pem key: failed to parse key") - errPemKeyWrongBlockType = errors.New("pkcs15: pem key: unsupported pem block type (only pkcs1 and pkcs8 supported)") - errPemKeyWrongType = errors.New("pkcs15: pem key: unsupported key type (only rsa 1,024, 2,048, and 3,072 supported)") + errPemKeyWrongBlockType = errors.New("pkcs15: pem key: unsupported pem block type") + errKeyWrongType = errors.New("pkcs15: pem key: unsupported key type") errPemCertBadBlock = errors.New("pkcs15: pem cert: failed to decode pem block") errPemCertFailedToParse = errors.New("pkcs15: pem cert: failed to parse cert") ) +var ( + supportedRSASizes = []int{1024, 2048, 3072, 4096} + supportedECDSACurves = []string{"P-256", "P-384", "P-521"} +) + // pemKeyDecode attempts to decode a pem encoded byte slice and then attempts -// to parse an RSA private key from the decoded pem block. an error is returned -// if any of these steps fail OR if the key is not RSA and of bitlen 1,024 or 2,048 +// to parse a private key from the decoded pem block. an error is returned +// if any of these steps fail OR if the key is not supported. func pemKeyDecode(keyPem []byte) (crypto.PrivateKey, error) { // decode pemBlock, _ := pem.Decode([]byte(keyPem)) @@ -47,28 +54,27 @@ func pemKeyDecode(keyPem []byte) (crypto.PrivateKey, error) { return nil, fmt.Errorf("pkcs15: pem key: failed sanity check (%s)", err) } - // verify proper bitlen - if rsaKey.N.BitLen() != 1024 && rsaKey.N.BitLen() != 2048 && rsaKey.N.BitLen() != 3072 { - return nil, errPemKeyWrongType + // verify supported rsa bitlen + if !slices.Contains(supportedRSASizes, rsaKey.N.BitLen()) { + return nil, errKeyWrongType } // good to go privateKey = rsaKey - // case "EC PRIVATE KEY": // SEC1, ASN.1 - // var ecdKey *ecdsa.PrivateKey - // ecdKey, err := x509.ParseECPrivateKey(pemBlock.Bytes) - // if err != nil { - // return nil, errPemKeyFailedToParse - // } + case "EC PRIVATE KEY": // SEC1, ASN.1 + ecdKey, err := x509.ParseECPrivateKey(pemBlock.Bytes) + if err != nil { + return nil, errPemKeyFailedToParse + } - // // verify acceptable curve name - // if ecdKey.Curve.Params().Name != "P-256" && ecdKey.Curve.Params().Name != "P-384" { - // return nil, errPemKeyWrongType - // } + // verify supported curve name + if !slices.Contains(supportedECDSACurves, ecdKey.Curve.Params().Name) { + return nil, errKeyWrongType + } - // // good to go - // privateKey = ecdKey + // good to go + privateKey = ecdKey case "PRIVATE KEY": // PKCS8 pkcs8Key, err := x509.ParsePKCS8PrivateKey(pemBlock.Bytes) @@ -84,25 +90,25 @@ func pemKeyDecode(keyPem []byte) (crypto.PrivateKey, error) { return nil, fmt.Errorf("pkcs15: pem key: failed sanity check (%s)", err) } - // verify proper bitlen - if pkcs8Key.N.BitLen() != 1024 && pkcs8Key.N.BitLen() != 2048 && pkcs8Key.N.BitLen() != 3072 { - return nil, errPemKeyWrongType + // verify supported rsa bitlen + if !slices.Contains(supportedRSASizes, pkcs8Key.N.BitLen()) { + return nil, errKeyWrongType } // good to go privateKey = pkcs8Key - // case *ecdsa.PrivateKey: - // // verify acceptable curve name - // if pkcs8Key.Curve.Params().Name != "P-256" && pkcs8Key.Curve.Params().Name != "P-384" { - // return nil, errPemKeyWrongType - // } + case *ecdsa.PrivateKey: + // verify supported curve name + if !slices.Contains(supportedECDSACurves, pkcs8Key.Curve.Params().Name) { + return nil, errKeyWrongType + } - // // good to go - // privateKey = pkcs8Key + // good to go + privateKey = pkcs8Key default: - return nil, errPemKeyWrongType + return nil, errKeyWrongType } default: diff --git a/pkg/pkcs15/pem_parse.go b/pkg/pkcs15/pem_parse.go index 2cd1fea..19e44f1 100644 --- a/pkg/pkcs15/pem_parse.go +++ b/pkg/pkcs15/pem_parse.go @@ -2,6 +2,8 @@ package pkcs15 import ( "crypto" + "crypto/ecdsa" + "crypto/rsa" "crypto/x509" ) @@ -10,6 +12,59 @@ import ( type pkcs15KeyCert struct { key crypto.PrivateKey cert *x509.Certificate + // store the encrypted enveloped Private Key for re-use + envelopedPrivateKey []byte +} + +// KeyType is used by consumers to check for compatibility +type KeyType int + +const ( + KeyTypeRSA1024 KeyType = iota + KeyTypeRSA2048 + KeyTypeRSA3072 + KeyTypeRSA4096 + + KeyTypeECP256 + KeyTypeECP384 + KeyTypeECP521 + + KeyTypeUnknown +) + +// KeyType returns the private key type +func (p15 *pkcs15KeyCert) KeyType() KeyType { + switch pKey := p15.key.(type) { + case *rsa.PrivateKey: + switch pKey.N.BitLen() { + case 1024: + return KeyTypeRSA1024 + case 2048: + return KeyTypeRSA2048 + case 3072: + return KeyTypeRSA3072 + case 4096: + return KeyTypeRSA4096 + + default: + } + + case *ecdsa.PrivateKey: + switch pKey.Curve.Params().Name { + case "P-256": + return KeyTypeECP256 + case "P-384": + return KeyTypeECP384 + case "P-521": + return KeyTypeECP521 + + default: + } + + default: + } + + return KeyTypeUnknown } // ParsePEMToPKCS15 parses the provide pem files to a pkcs15 struct; it also does some @@ -27,10 +82,17 @@ func ParsePEMToPKCS15(keyPem, certPem []byte) (*pkcs15KeyCert, error) { return nil, err } + // create p15 struct p15 := &pkcs15KeyCert{ key: key, cert: cert, } + // pre-calculate encrypted envelope + err = p15.computeEncryptedKeyEnvelope() + if err != nil { + return nil, err + } + return p15, nil } diff --git a/pkg/pkcs15/pem_to_p15.go b/pkg/pkcs15/pem_to_p15.go index c213ddb..0c2214d 100644 --- a/pkg/pkcs15/pem_to_p15.go +++ b/pkg/pkcs15/pem_to_p15.go @@ -2,8 +2,10 @@ package pkcs15 import ( "apc-p15-tool/pkg/tools/asn1obj" + "crypto/ecdsa" "crypto/rsa" "encoding/asn1" + "fmt" "math/big" ) @@ -13,39 +15,87 @@ const ( // toP15KeyCert creates a P15 file with both the private key and certificate, mirroring the // final p15 file an APC UPS expects (though without the header) -func (p15 *pkcs15KeyCert) toP15KeyCert(keyEnvelope []byte) (keyCert []byte, err error) { - // private key object - privateKey := asn1obj.Sequence([][]byte{ - // commonObjectAttributes - Label - asn1obj.Sequence([][]byte{ - asn1obj.UTF8String(apcKeyLabel), - }), - // CommonKeyAttributes - asn1obj.Sequence([][]byte{ - // CommonKeyAttributes - iD - uses keyId that is SHA1( SubjectPublicKeyInfo SEQUENCE ) - asn1obj.OctetString(p15.keyId()), - // CommonKeyAttributes - usage (trailing 0s will drop) - asn1obj.BitString([]byte{byte(0b11100010)}), - // CommonKeyAttributes - accessFlags (trailing 0s will drop) - asn1obj.BitString([]byte{byte(0b10110000)}), - // CommonKeyAttributes - startDate - asn1obj.GeneralizedTime(p15.cert.NotBefore), - // CommonKeyAttributes - [0] endDate - asn1obj.GeneralizedTimeExplicitValue(0, p15.cert.NotAfter), - }), - // ObjectValue - indirect-protected - asn1obj.ExplicitCompound(1, [][]byte{ +func (p15 *pkcs15KeyCert) ToP15KeyCert() (keyCert []byte, err error) { + // encrypted envelope is required + err = p15.computeEncryptedKeyEnvelope() + if err != nil { + return nil, err + } + + // create private key object + var privKeyObj []byte + + switch p15.key.(type) { + case *rsa.PrivateKey: + // private key object + privKeyObj = asn1obj.Sequence([][]byte{ - // AuthEnvelopedData Type ([4]) - asn1obj.ExplicitCompound(4, [][]byte{ - keyEnvelope, + // commonObjectAttributes - Label + asn1obj.Sequence([][]byte{ + asn1obj.UTF8String(apcKeyLabel), }), - }), - }), - }) + // CommonKeyAttributes + asn1obj.Sequence([][]byte{ + // CommonKeyAttributes - iD - uses keyId that is SHA1( SubjectPublicKeyInfo SEQUENCE ) + asn1obj.OctetString(p15.keyId()), + // CommonKeyAttributes - usage (trailing 0s will drop) + asn1obj.BitString([]byte{byte(0b11100010)}), + // CommonKeyAttributes - accessFlags (trailing 0s will drop) + asn1obj.BitString([]byte{byte(0b10110000)}), + // CommonKeyAttributes - startDate + asn1obj.GeneralizedTime(p15.cert.NotBefore), + // CommonKeyAttributes - [0] endDate + asn1obj.GeneralizedTimeExplicitValue(0, p15.cert.NotAfter), + }), + // ObjectValue - indirect-protected + asn1obj.ExplicitCompound(1, [][]byte{ + asn1obj.Sequence([][]byte{ + // AuthEnvelopedData Type ([4]) + asn1obj.ExplicitCompound(4, [][]byte{ + p15.envelopedPrivateKey, + }), + }), + }), + }) + + case *ecdsa.PrivateKey: + privKeyObj = + asn1obj.ExplicitCompound(0, [][]byte{ + // commonObjectAttributes - Label + asn1obj.Sequence([][]byte{ + asn1obj.UTF8String(apcKeyLabel), + }), + // CommonKeyAttributes + asn1obj.Sequence([][]byte{ + // CommonKeyAttributes - iD - uses keyId that is SHA1( SubjectPublicKeyInfo SEQUENCE ) + asn1obj.OctetString(p15.keyId()), + // CommonKeyAttributes - usage (trailing 0s will drop) + asn1obj.BitString([]byte{byte(0b00100010)}), + // CommonKeyAttributes - accessFlags (trailing 0s will drop) + asn1obj.BitString([]byte{byte(0b10110000)}), + // CommonKeyAttributes - startDate + asn1obj.GeneralizedTime(p15.cert.NotBefore), + // CommonKeyAttributes - [0] endDate + asn1obj.GeneralizedTimeExplicitValue(0, p15.cert.NotAfter), + }), + // ObjectValue - indirect-protected + asn1obj.ExplicitCompound(1, [][]byte{ + asn1obj.Sequence([][]byte{ + // AuthEnvelopedData Type ([4]) + asn1obj.ExplicitCompound(4, [][]byte{ + p15.envelopedPrivateKey, + }), + }), + }), + }) + + default: + // bad key type + return nil, errKeyWrongType + } // cert object - cert := asn1obj.Sequence([][]byte{ + certObj := asn1obj.Sequence([][]byte{ // commonObjectAttributes - Label asn1obj.Sequence([][]byte{ asn1obj.UTF8String(apcKeyLabel), @@ -59,6 +109,7 @@ func (p15 *pkcs15KeyCert) toP15KeyCert(keyEnvelope []byte) (keyCert []byte, err p15.keyIdInt3(), p15.keyIdInt6(), p15.keyIdInt7(), + // 8 & 9 will return nil for EC keys (effectively omitting them) p15.keyIdInt8(), p15.keyIdInt9(), }), @@ -77,7 +128,7 @@ func (p15 *pkcs15KeyCert) toP15KeyCert(keyEnvelope []byte) (keyCert []byte, err }), }) - // build the file + // build the object // ContentInfo keyCert = asn1obj.Sequence([][]byte{ @@ -92,12 +143,12 @@ func (p15 *pkcs15KeyCert) toP15KeyCert(keyEnvelope []byte) (keyCert []byte, err asn1obj.Sequence([][]byte{ asn1obj.ExplicitCompound(0, [][]byte{ asn1obj.ExplicitCompound(0, [][]byte{ - privateKey, + privKeyObj, }), }), asn1obj.ExplicitCompound(4, [][]byte{ asn1obj.ExplicitCompound(0, [][]byte{ - cert, + certObj, }), }), }), @@ -111,141 +162,212 @@ func (p15 *pkcs15KeyCert) toP15KeyCert(keyEnvelope []byte) (keyCert []byte, err // toP15Key creates a P15 file with just the private key, mirroring the p15 format // the APC tool uses when generating a new private key (Note: no header is used on // this file) -func (p15 *pkcs15KeyCert) toP15Key(keyEnvelope []byte) (key []byte, err error) { - // create public key object - var pubKeyObj []byte +func (p15 *pkcs15KeyCert) ToP15Key() (key []byte, err error) { + // encrypted envelope is required + err = p15.computeEncryptedKeyEnvelope() + if err != nil { + return nil, err + } + + // create private and public key objects + var pubKeyObj, privKeyObj []byte switch privKey := p15.key.(type) { case *rsa.PrivateKey: - pubKeyObj = asn1obj.ExplicitCompound(1, [][]byte{ + // private key object (slightly different than the key+cert format) + privKeyObj = asn1obj.Sequence([][]byte{ + // commonObjectAttributes - Label + asn1obj.Sequence([][]byte{ + asn1obj.UTF8String(apcKeyLabel), + }), + // CommonKeyAttributes + asn1obj.Sequence([][]byte{ + // CommonKeyAttributes - iD - uses keyId that is SHA1( SubjectPublicKeyInfo SEQUENCE ) + asn1obj.OctetString(p15.keyId()), + // CommonKeyAttributes - usage (trailing 0s will drop) + asn1obj.BitString([]byte{byte(0b11100010)}), + // CommonKeyAttributes - accessFlags (trailing 0s will drop) + asn1obj.BitString([]byte{byte(0b10110000)}), + }), + + // Key IDs asn1obj.ExplicitCompound(0, [][]byte{ - asn1obj.ExplicitCompound(1, [][]byte{ - asn1obj.Sequence([][]byte{ - asn1obj.ObjectIdentifier(asn1obj.OIDrsaEncryptionPKCS1), - asn1.NullBytes, + asn1obj.Sequence([][]byte{ + asn1obj.ExplicitCompound(0, [][]byte{ + p15.keyIdInt2(), + p15.keyIdInt8(), + p15.keyIdInt9(), }), - // RSAPublicKey SubjectPublicKeyInfo - asn1obj.BitString( - asn1obj.Sequence([][]byte{ - asn1obj.Integer(privKey.PublicKey.N), - asn1obj.Integer(big.NewInt(int64(privKey.PublicKey.E))), - }), - ), }), }), - // not 100% certain but appears to be rsa key byte len - asn1obj.Integer(big.NewInt(int64(privKey.PublicKey.N.BitLen() / 8))), - }), - }) + + // ObjectValue - indirect-protected + asn1obj.ExplicitCompound(1, [][]byte{ + asn1obj.Sequence([][]byte{ + // AuthEnvelopedData Type ([4]) + asn1obj.ExplicitCompound(4, [][]byte{ + p15.envelopedPrivateKey, + }), + }), + }), + }) + + // pub key stub + pubKeyObj = + asn1obj.Sequence([][]byte{ + // commonObjectAttributes - Label + asn1obj.Sequence([][]byte{ + asn1obj.UTF8String(apcKeyLabel), + }), + // CommonKeyAttributes + asn1obj.Sequence([][]byte{ + asn1obj.OctetString(p15.keyId()), + asn1obj.BitString([]byte{byte(0b10000010)}), + asn1obj.BitString([]byte{byte(0b01000000)}), + }), + + asn1obj.ExplicitCompound(1, [][]byte{ + asn1obj.Sequence([][]byte{ + asn1obj.ExplicitCompound(0, [][]byte{ + asn1obj.ExplicitCompound(1, [][]byte{ + asn1obj.Sequence([][]byte{ + asn1obj.ObjectIdentifier(asn1obj.OIDrsaEncryptionPKCS1), + asn1.NullBytes, + }), + // RSAPublicKey SubjectPublicKeyInfo + asn1obj.BitString( + asn1obj.Sequence([][]byte{ + asn1obj.Integer(privKey.PublicKey.N), + asn1obj.Integer(big.NewInt(int64(privKey.PublicKey.E))), + }), + ), + }), + }), + // not 100% certain but appears to be rsa key byte len + asn1obj.Integer(big.NewInt(int64(privKey.PublicKey.N.BitLen() / 8))), + }), + }), + }) + + case *ecdsa.PrivateKey: + // private key object (slightly different than the key+cert format) + privKeyObj = + asn1obj.ExplicitCompound(0, [][]byte{ + // commonObjectAttributes - Label + asn1obj.Sequence([][]byte{ + asn1obj.UTF8String(apcKeyLabel), + }), + // CommonKeyAttributes + asn1obj.Sequence([][]byte{ + // CommonKeyAttributes - iD - uses keyId that is SHA1( SubjectPublicKeyInfo SEQUENCE ) + asn1obj.OctetString(p15.keyId()), + // CommonKeyAttributes - usage (trailing 0s will drop) + asn1obj.BitString([]byte{byte(0b00100010)}), + // CommonKeyAttributes - accessFlags (trailing 0s will drop) + asn1obj.BitString([]byte{byte(0b10110000)}), + }), + + // Key IDs + asn1obj.ExplicitCompound(0, [][]byte{ + asn1obj.Sequence([][]byte{ + asn1obj.ExplicitCompound(0, [][]byte{ + p15.keyIdInt2(), + }), + }), + }), + + // ObjectValue - indirect-protected + asn1obj.ExplicitCompound(1, [][]byte{ + asn1obj.Sequence([][]byte{ + // AuthEnvelopedData Type ([4]) + asn1obj.ExplicitCompound(4, [][]byte{ + p15.envelopedPrivateKey, + }), + }), + }), + }) + + // convert ec pub key to a form that provides a public key bytes function + ecdhKey, err := privKey.PublicKey.ECDH() + if err != nil { + return nil, fmt.Errorf("failed to parse ec public key (%s)", err) + } + + // select correct OID for curve + var curveOID asn1.ObjectIdentifier + switch privKey.Curve.Params().Name { + case "P-256": + curveOID = asn1obj.OIDprime256v1 + case "P-384": + curveOID = asn1obj.OIDsecp384r1 + case "P-521": + curveOID = asn1obj.OIDsecp521r1 + default: + // bad curve name + return nil, errKeyWrongType + } + + // pub key stub + pubKeyObj = + asn1obj.ExplicitCompound(0, [][]byte{ + // commonObjectAttributes - Label + asn1obj.Sequence([][]byte{ + asn1obj.UTF8String(apcKeyLabel), + }), + // CommonKeyAttributes + asn1obj.Sequence([][]byte{ + asn1obj.OctetString(p15.keyId()), + asn1obj.BitString([]byte{byte(0b00000010)}), + asn1obj.BitString([]byte{byte(0b01000000)}), + }), + + asn1obj.ExplicitCompound(1, [][]byte{ + asn1obj.Sequence([][]byte{ + asn1obj.ExplicitCompound(0, [][]byte{ + asn1obj.Sequence([][]byte{ + asn1obj.Sequence([][]byte{ + asn1obj.ObjectIdentifier(asn1obj.OIDecPublicKey), + asn1obj.ObjectIdentifier(curveOID), + }), + asn1obj.BitString(ecdhKey.Bytes()), + }), + }), + }), + }), + }) default: - // panic if non-RSA key - panic("p15 key file for non-rsa key is unexpected and unsupported") + // bad key type + return nil, errKeyWrongType } - // private key object (slightly different than the key+cert format) - privateKey := asn1obj.Sequence([][]byte{ - // commonObjectAttributes - Label + // assemble complete object + key = asn1obj.Sequence([][]byte{ - asn1obj.UTF8String(apcKeyLabel), - }), - // CommonKeyAttributes - asn1obj.Sequence([][]byte{ - // CommonKeyAttributes - iD - uses keyId that is SHA1( SubjectPublicKeyInfo SEQUENCE ) - asn1obj.OctetString(p15.keyId()), - // CommonKeyAttributes - usage (trailing 0s will drop) - asn1obj.BitString([]byte{byte(0b11100010)}), - // CommonKeyAttributes - accessFlags (trailing 0s will drop) - asn1obj.BitString([]byte{byte(0b10110000)}), - }), - - // - asn1obj.ExplicitCompound(0, [][]byte{ - asn1obj.Sequence([][]byte{ - asn1obj.ExplicitCompound(0, [][]byte{ - p15.keyIdInt2(), - p15.keyIdInt8(), - p15.keyIdInt9(), - }), - }), - }), - - // ObjectValue - indirect-protected - asn1obj.ExplicitCompound(1, [][]byte{ - asn1obj.Sequence([][]byte{ - // AuthEnvelopedData Type ([4]) - asn1obj.ExplicitCompound(4, [][]byte{ - keyEnvelope, - }), - }), - }), - }) - - // ContentInfo - key = asn1obj.Sequence([][]byte{ - - // contentType: OID: 1.2.840.113549.1.15.3.1 pkcs15content (PKCS #15 content type) - asn1obj.ObjectIdentifier(asn1obj.OIDPkscs15Content), - - // content - asn1obj.ExplicitCompound(0, [][]byte{ - asn1obj.Sequence([][]byte{ - asn1obj.Integer(big.NewInt(0)), + // contentType: OID: 1.2.840.113549.1.15.3.1 pkcs15content (PKCS #15 content type) + asn1obj.ObjectIdentifier(asn1obj.OIDPkscs15Content), + // content + asn1obj.ExplicitCompound(0, [][]byte{ asn1obj.Sequence([][]byte{ - // [0] Private Key - asn1obj.ExplicitCompound(0, [][]byte{ + asn1obj.Integer(big.NewInt(0)), + asn1obj.Sequence([][]byte{ + // [0] Private Keys asn1obj.ExplicitCompound(0, [][]byte{ - privateKey, + asn1obj.ExplicitCompound(0, [][]byte{ + privKeyObj, + }), }), - }), - // [1] Public Key - asn1obj.ExplicitCompound(1, [][]byte{ - asn1obj.ExplicitCompound(0, [][]byte{ - asn1obj.Sequence([][]byte{ - // commonObjectAttributes - Label - asn1obj.Sequence([][]byte{ - asn1obj.UTF8String(apcKeyLabel), - }), - // CommonKeyAttributes - asn1obj.Sequence([][]byte{ - asn1obj.OctetString(p15.keyId()), - asn1obj.BitString([]byte{byte(0b10000010)}), - asn1obj.BitString([]byte{byte(0b01000000)}), - }), - + // [1] Public Keys + asn1obj.ExplicitCompound(1, [][]byte{ + asn1obj.ExplicitCompound(0, [][]byte{ pubKeyObj, }), }), }), }), }), - }), - }) + }) return key, nil } - -// ToP15File turns the key and cert into a properly formatted and encoded -// p15 file -func (p15 *pkcs15KeyCert) ToP15Files() (keyCertFile []byte, keyFile []byte, err error) { - // rsa encrypted key in encrypted envelope (will be shared by both output files) - envelope, err := p15.encryptedKeyEnvelope() - if err != nil { - return nil, nil, err - } - - // key + cert file - keyCertFile, err = p15.toP15KeyCert(envelope) - if err != nil { - return nil, nil, err - } - - // key only file - keyFile, err = p15.toP15Key(envelope) - if err != nil { - return nil, nil, err - } - - return keyCertFile, keyFile, nil -} diff --git a/pkg/pkcs15/private_key.go b/pkg/pkcs15/private_key.go index 0321551..59b538e 100644 --- a/pkg/pkcs15/private_key.go +++ b/pkg/pkcs15/private_key.go @@ -2,6 +2,7 @@ package pkcs15 import ( "apc-p15-tool/pkg/tools/asn1obj" + "crypto/ecdsa" "crypto/rsa" ) @@ -27,15 +28,13 @@ func (p15 *pkcs15KeyCert) privateKeyObject() []byte { asn1obj.IntegerExplicitValue(7, privKey.Precomputed.Qinv), }) - // case *ecdsa.PrivateKey: - // // Only private piece is the integer D - // privKeyObj = asn1obj.Sequence([][]byte{ - // asn1obj.Integer(privKey.D), - // }) + case *ecdsa.PrivateKey: + // Only private piece is the integer D + privKeyObj = asn1obj.Integer(privKey.D) default: - // panic if non-RSA key - panic("private key object for non-rsa key is unexpected and unsupported") + // panic if unsupported key + panic("private key type is unexpected and unsupported") } return privKeyObj diff --git a/pkg/tools/asn1obj/oid.go b/pkg/tools/asn1obj/oid.go index 3975ded..70009c2 100644 --- a/pkg/tools/asn1obj/oid.go +++ b/pkg/tools/asn1obj/oid.go @@ -11,6 +11,10 @@ var ( OIDdesEDE3CBC = asn1.ObjectIdentifier{1, 2, 840, 113549, 3, 7} // des-EDE3-CBC (RSADSI encryptionAlgorithm) OIDpkcs7Data = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 7, 1} // data (PKCS #7) OIDauthEnc128 = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 9, 16, 3, 15} // authEnc128 (S/MIME Algorithms) + OIDecPublicKey = asn1.ObjectIdentifier{1, 2, 840, 10045, 2, 1} // ecPublicKey (ANSI X9.62 public key type) + OIDprime256v1 = asn1.ObjectIdentifier{1, 2, 840, 10045, 3, 1, 7} // prime256v1 (ANSI X9.62 named elliptic curve) + OIDsecp384r1 = asn1.ObjectIdentifier{1, 3, 132, 0, 34} // secp384r1 (SECG (Certicom) named elliptic curve) + OIDsecp521r1 = asn1.ObjectIdentifier{1, 3, 132, 0, 35} // secp521r1 (SECG (Certicom) named elliptic curve) ) // ObjectIdentifier returns an ASN.1 OBJECT IDENTIFIER with the oidValue bytes