mirror of
https://github.com/gregtwallace/apc-p15-tool.git
synced 2025-01-22 16:14:09 +00:00
40eca754e0
* apcssh: add descriptive error when required file(s) not passed * create: dont create key+cert file when key isn't supported by NMC2 * config: fix usage messages re: key types * p15 files: dont generate key+cert when it isn't needed (aka NMC2 doesn't support key) * pkcs15: pre-calculate envelope when making the p15 struct * pkcs15: omit key ID 8 & 9 from EC keys * pkcs15: update key decode logic * pkcs15: add key type value for easy determination of compatibility * pkcs15: add ec key support * pkcs15: separate functions for key and key+cert p15 files * update README see: https://github.com/gregtwallace/apc-p15-tool/issues/6
225 lines
6.1 KiB
Go
225 lines
6.1 KiB
Go
package pkcs15
|
|
|
|
import (
|
|
"apc-p15-tool/pkg/tools/asn1obj"
|
|
"crypto/ecdsa"
|
|
"crypto/rsa"
|
|
"crypto/sha1"
|
|
"encoding/binary"
|
|
"math/big"
|
|
)
|
|
|
|
// keyId returns the keyId for the overall key object
|
|
func (p15 *pkcs15KeyCert) keyId() []byte {
|
|
// object to hash is just the RawSubjectPublicKeyInfo
|
|
|
|
// SHA-1 Hash
|
|
hasher := sha1.New()
|
|
_, err := hasher.Write(p15.cert.RawSubjectPublicKeyInfo)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
return hasher.Sum(nil)
|
|
}
|
|
|
|
// keyIdInt2 returns the sequence for keyId with INT val of 2
|
|
// For APC, this appears to be the same value is the base keyId
|
|
// but this isn't compliant with the spec which actually seems
|
|
// to call for SKID (skid octet value copied directly out of the
|
|
// certificate's x509 extension)
|
|
func (p15 *pkcs15KeyCert) keyIdInt2() []byte {
|
|
// Create Object
|
|
obj := asn1obj.Sequence([][]byte{
|
|
asn1obj.Integer(big.NewInt(2)),
|
|
// Note: This is for APC, doesn't seem compliant with spec though
|
|
asn1obj.OctetString(p15.keyId()),
|
|
})
|
|
|
|
return obj
|
|
}
|
|
|
|
// keyIdInt3 returns the sequence for keyId with INT val of 3; This value is equivelant
|
|
// to "issuerAndSerialNumberHash" and rfc defines IssuerAndSerialNumber SEQUENCE:
|
|
// https://datatracker.ietf.org/doc/html/rfc3852#section-10.2.4
|
|
func (p15 *pkcs15KeyCert) keyIdInt3() []byte {
|
|
// object to hash
|
|
hashObj := asn1obj.Sequence([][]byte{
|
|
// issuerDistinguishedName
|
|
p15.cert.RawIssuer,
|
|
// serialNumber
|
|
asn1obj.Integer(p15.cert.SerialNumber),
|
|
})
|
|
|
|
// SHA-1 Hash
|
|
hasher := sha1.New()
|
|
_, err := hasher.Write(hashObj)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
// object to return
|
|
obj := asn1obj.Sequence([][]byte{
|
|
asn1obj.Integer(big.NewInt(3)),
|
|
asn1obj.OctetString(hasher.Sum(nil)),
|
|
})
|
|
|
|
return obj
|
|
}
|
|
|
|
// keyIdInt6 returns the sequence for keyId with INT val of 6; This value is equivelant
|
|
// to "issuerNameHash"
|
|
func (p15 *pkcs15KeyCert) keyIdInt6() []byte {
|
|
// object to hash is just the RawIssuer
|
|
|
|
// SHA-1 Hash
|
|
hasher := sha1.New()
|
|
_, err := hasher.Write(p15.cert.RawIssuer)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
// object to return
|
|
obj := asn1obj.Sequence([][]byte{
|
|
asn1obj.Integer(big.NewInt(6)),
|
|
asn1obj.OctetString(hasher.Sum(nil)),
|
|
})
|
|
|
|
return obj
|
|
}
|
|
|
|
// keyIdInt7 returns the sequence for keyId with INT val of 7; This value is equivelant
|
|
// to "subjectNameHash"
|
|
func (p15 *pkcs15KeyCert) keyIdInt7() []byte {
|
|
// object to hash is just the RawIssuer
|
|
|
|
// SHA-1 Hash
|
|
hasher := sha1.New()
|
|
_, err := hasher.Write(p15.cert.RawSubject)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
// object to return
|
|
obj := asn1obj.Sequence([][]byte{
|
|
asn1obj.Integer(big.NewInt(7)),
|
|
asn1obj.OctetString(hasher.Sum(nil)),
|
|
})
|
|
|
|
return obj
|
|
}
|
|
|
|
// keyIdInt8 returns the sequence for keyId with INT val of 8; This value is equivelant
|
|
// to "pgp", which is PGP v3 key Id.
|
|
func (p15 *pkcs15KeyCert) keyIdInt8() []byte {
|
|
var keyIdVal []byte
|
|
|
|
switch privKey := p15.key.(type) {
|
|
case *rsa.PrivateKey:
|
|
// RSA: The ID value is just the last 8 bytes of the public key N value
|
|
nBytes := privKey.N.Bytes()
|
|
keyIdVal = nBytes[len(nBytes)-8:]
|
|
|
|
case *ecdsa.PrivateKey:
|
|
// don't use this key id, leave empty
|
|
return nil
|
|
|
|
default:
|
|
// panic if unexpected key type
|
|
panic("key id 8 for key is unexpected and unsupported")
|
|
}
|
|
|
|
// object to return
|
|
idObj := asn1obj.Sequence([][]byte{
|
|
asn1obj.Integer(big.NewInt(8)),
|
|
asn1obj.OctetString(keyIdVal),
|
|
})
|
|
|
|
return idObj
|
|
}
|
|
|
|
// bigIntToMpi returns the MPI (as defined in RFC 4880 s 3.2) from a given
|
|
// big.Int; this is used as a helper for key ID 9 (openPGP)
|
|
func bigIntToMpi(i *big.Int) []byte {
|
|
length := make([]byte, 2)
|
|
binary.BigEndian.PutUint16(length, uint16(i.BitLen()))
|
|
|
|
return append(length, i.Bytes()...)
|
|
}
|
|
|
|
// keyIdInt9 returns the sequence for keyId with INT val of 9; This value is equivelant
|
|
// to "openPGP", which is PGP v4 key Id.
|
|
// see: https://www.rfc-editor.org/rfc/rfc4880.html s 12.2
|
|
func (p15 *pkcs15KeyCert) keyIdInt9() []byte {
|
|
// A V4 fingerprint is the 160-bit SHA-1 hash of the octet 0x99,
|
|
// followed by the two-octet packet length, followed by the entire
|
|
// Public-Key packet starting with the version field. The Key ID is the
|
|
// low-order 64 bits of the fingerprint.
|
|
|
|
// first make the public key packet
|
|
publicKeyPacket := []byte{}
|
|
|
|
// starting with the version field (A one-octet version number (4)).
|
|
publicKeyPacket = append(publicKeyPacket, byte(4))
|
|
|
|
// A four-octet number denoting the time that the key was created.
|
|
// NOTE: use cert validity start as proxy for key creation since key pem
|
|
// doesn't actually contain a created at time -- in reality notBefore tends
|
|
// to be ~ 1 hour ish BEFORE the cert was even created. Key would also
|
|
// obviously have to be created prior to the cert creation.
|
|
time := make([]byte, 4)
|
|
binary.BigEndian.PutUint32(time, uint32(p15.cert.NotBefore.Unix()))
|
|
publicKeyPacket = append(publicKeyPacket, time...)
|
|
|
|
// the next part is key type specific
|
|
switch privKey := p15.key.(type) {
|
|
case *rsa.PrivateKey:
|
|
// A one-octet number denoting the public-key algorithm of this key.
|
|
// 1 - RSA (Encrypt or Sign) [HAC]
|
|
publicKeyPacket = append(publicKeyPacket, byte(1))
|
|
|
|
// Algorithm-Specific Fields for RSA public keys:
|
|
// multiprecision integer (MPI) of RSA public modulus n
|
|
publicKeyPacket = append(publicKeyPacket, bigIntToMpi(privKey.N)...)
|
|
|
|
// MPI of RSA public encryption exponent e
|
|
e := big.NewInt(int64(privKey.PublicKey.E))
|
|
publicKeyPacket = append(publicKeyPacket, bigIntToMpi(e)...)
|
|
|
|
case *ecdsa.PrivateKey:
|
|
// don't use this key id, leave empty
|
|
return nil
|
|
|
|
default:
|
|
// panic if unexpected key type
|
|
panic("key id 9 for key is unexpected and unsupported")
|
|
}
|
|
|
|
// Assemble the V4 byte array that will be hashed
|
|
// 0x99 (1 octet)
|
|
toHash := []byte{0x99}
|
|
|
|
// big endian encoded length of public key packet (2 octets)
|
|
length := make([]byte, 2)
|
|
binary.BigEndian.PutUint16(length, uint16(len(publicKeyPacket)))
|
|
toHash = append(toHash, length...)
|
|
|
|
// Public-Key packet
|
|
toHash = append(toHash, publicKeyPacket...)
|
|
|
|
// SHA-1 Hash (Fingerprint)
|
|
hasher := sha1.New()
|
|
hasher.Write(toHash)
|
|
sha1Hash := hasher.Sum(nil)
|
|
|
|
// keyId is lower 64 bits (8 bytes)
|
|
keyId := sha1Hash[len(sha1Hash)-8:]
|
|
|
|
// object to return
|
|
idObj := asn1obj.Sequence([][]byte{
|
|
asn1obj.Integer(big.NewInt(9)),
|
|
asn1obj.OctetString(keyId),
|
|
})
|
|
|
|
return idObj
|
|
}
|